注重考查学生对其中所蕴含的数学本质的理解
来源:    发布时间: 2020-05-21 16:56    次浏览   >

6.创新意识:主要指能发现和提出简单数学问题,初步懂得应用所学的数学知识、技能和基本思想进行独立思考;能归纳概括得到猜想和规律,并加以验证.

了解数产生的意义,理解代数运算的意义、算理,能够合理地进行基本运算与估算;能够在实际情境中有效地应用代数运算、代数模型及相关概念解决问题;能够借助不同的方法探索几何对象的有关性质;能够使用不同的方式表达几何对象的大小、位置与特征;能够在头脑里构建几何对象,进行几何图形的分解与组合,能对某些图形进行简单的变换;能够借助数学证明的方法确认数学命题的正确性;正确理解数据的含义,能够结合实际需要有效地表达数据特征,会根据数据结果作合理的预测;了解概率的涵义,能够借助概率模型、或通过设计活动解释一些事件发生的概率.

数学基本能力指学生在运算能力、推理能力、空间观念、数据分析观念、应用意识、创新意识等方面的发展情况,其内容主要包括:

4.基础性:命题应突出基础知识、基本技能、基本思想、基本活动经验的考查,注重对数学问题解决的通性通法的考查,注重考查学生对其中所蕴含的数学本质的理解,关注学生学习数学过程与结果的考查.

5.发展性:命题应突出对学生数学思考能力、解决问题能力和数学素养的发展性评价,重视反映数学思想方法、数学探究活动的过程性评价,注重对学生的应用意识和创新意识的考查,提倡评价标准多样化,促进学生的个性化发展.

5.应用意识:认识到现实生活中蕴含着大量与数量和图形有关的问题可以抽象成数学问题,并有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题.

2.推理能力:凭借经验和直觉,通过观察、尝试、归纳、类比等活动获得数学猜想,并能进一步从已有的事实和确定的规则出发,按照逻辑推理的法则进行证明和计算.

1.运算能力:主要是指能够根据法则和运算律正确地进行运算的能力.

4.数据分析观念:指会收集、分析数据,并根据数据中蕴涵的信息选择合适的方法做出判断,体验随机性.

1.导向性:命题应体现义务教育的性质,面向全体学生,关注每个学生的不同发展;体现《数学课程标准》的理念,落实《数学课程标准》所设立的课程目标,关注数学概念的理解和解释,关注数学规则的选择和运用,关注数学问题的发现与解决;促进教与学方式的转变,促进数学教学质量的提升.

3.科学性:试卷的命制应严格按照命题的程序和要求进行,有效发挥各种题型的功能,保持测量目标与行为目标一致,避免出现知识性、技术性、科学性错误.

3.空间观念:主要指能依据语言的描述画出图形,懂得描述图形的运动和变化,并利用图形描述和分析问题,研究基本图形性质.

2.公平性:试题素材、背景应符合学生所能理解的生活现实、数学现实和其他学科现实,考虑城乡学生认知的差异性,避免出现偏题、怪题.